
Android SDK Quick Start Guide

Integrate the SensifyID SDK into your Android App
This guide describes the steps required to add the SensifyID SDK into your Android app. If you aren’t ready to
integrate the SDK into your Android app yet, and wish to learn more about the capabilities of the solution, visit
the Zighra website.

Requirements

A minSdkVersion of 19 is required in order for the application to build and run properly. Modify your Android Studio
project's build file (build.gradle) accordingly.

The SDK and sample application will need a mobile device to run, they will not work on emulators.

Download the SDK

The SDK is part of the downloaded package as a binary framework form (.aar). Once downloaded, add the AAR file
as a dependency in your Android Studio's gradle (build.gradle(Project:<projname>) & build.gradle(Module: app)
files.

NOTE:: Do not use the AAR on the Quick Start developer sample solution shared along with the package. You
should be able to run ONLY the bundled sample with the library which comes along with it.

Obtain your App Key and Secret

Contact the Zighra Support team to get your app key and secret, which uniquely identify your app to the framework
and the Zighra solution.

Other Dependencies

The SDK already embeds the library, com.madgag.spongycastle:prov:1.54.0.0, as a dependency. If the application
also requires this library as a dependency, please contact support at Zighra solution.

Configure the SDK

Set the configuration values of the SDK as meta‑data values in your Android Studio project's manifest file. The SDK
is accessed as a shared instance (singleton) that should be configured only once during the lifecycle of the app.

Specify your app key, app secret and encryption setting in your project's AndroidManifest.xml file as follows. By
default, encryption is disabled.

<meta-data android:name="zighra_app_key" android:value="your_app_key" />
<meta-data android:name="zighra_app_secret" android:value="your_app_secret"/>

<!-- optional; by default false-->
<meta-data android:name="zighra_app_encryption" android:value="true/false" />

<!-- optional; by default use SDK default URL (api.zighra.com)-->
<meta-data android:name="zighra_server_url" android:value="SensifyID WebAPI URL" />

<!-- optional; by default use SDK default port (3001)-->
<meta-data android:name="zighra_server_port" android:value="SensifyID WebAPI port" />

http://zighra.com/

Access the SDK interface

Access the interface of the SDK with in your Activity, via kineticFactory.getKinetic(Context cxt) . It gives back
the interface of the SensifyID SDK. You can access all SDK functionalities through this interface.

public class SetProfileActivity extends Activity {
 private Kinetic mKinetic;
 ...
 protected void onCreate(Bundle savedInstanceState) {
 ...
 // Get the SDK interface
 mKinetic = KineticFactory.getKinetic(this);
 ...
 }
 ...
}
public class SwipeActivity extends Activity {
 private Kinetic mKinetic;
 ...
 protected void onCreate(Bundle savedInstanceState) {
 ...
 // access the singleton SDK instance
 mKinetic = KineticFactory.getKinetic(this);
 ...
 }
 ...
}

User Profile

The user of your app must be uniquely identified within the SensifyID system. Each user is identified by a uCode
 (user code) and name (user name) property. We recommend choosing a user code that relates to your app user's
login identity, and passing this information to the SensifyID SDK via the
kinetic.setProfile(String name, String uCode ...) . On the first call of this method, the SDK will communicate
with the SensifyID web service to create a new profile for the user and respond with a unique profile code. On
subsequent calls with the same user code, the user’s profile code will be retrieved from the shared preferences on
the device.

setProfile(String uName, String uCode) takes Kinetic.OnSetProfileSuccessListener and
Kinetic.OnSetProfileFailureListener, to receive the results.

Create/set profile using the uName and uCode provided as follows

...
////Call this function to create/set current profile. Check the setProfile status passing anonymous li
mKinetic.setProfile(uName, uCode, new Kinetic.OnSetProfileSuccessListener() {
 @Override
 public void onSuccess(Kinetic.ProfileResponse profileResponse) {
 ...
 }},
 new Kinetic.OnSetProfileFailureListener() {
 @Override
 public void onFailure(Kinetic.ProfileResponse profileResponse) {
 ...
 }
})
...

Device Checks

In order to detect potential fraudulent access from another device, and ensure that any learned authentication
models associated with a device cannot be adopted by a new device, your app must perform a device check with
the SDK. A device check builds a unique fingerprint for the device and asks the SensifyID web service to validate
the fingerprint against the previously stored fingerprint associated with the user’s profile.

At a minimum, a device check should be performed in the following points in the runtime lifecycle of the app: At the
beginning of your user’s session with your app, such as after a login. When your user is logged in, a device check
should be performed after app launch and when the app resumes from a suspended state.

Check device can be called via mKinetic.checkDevice() as follows

#!
...
//Call checkDevice and later in the activity, check the status by passing the anonymous listeners
mKinetic.checkDevice(new Kinetic.OnCheckDeviceSuccessListener() {
@Override
public void onSuccess(Kinetic.CheckDeviceResponse checkDeviceResponse) {
 ...
}
}, new Kinetic.OnCheckDeviceFailureListener() {
@Override
public void onFailure(Kinetic.CheckDeviceResponse checkDeviceResponse) {
 ...
}
}));
...

Integrate Gesture Authentication

The SDK provides several options for authenticating the user with a swipe gesture. Your app may use swipe‑based
authentication as either the primary way for the user to authorize the completion of a task, or as a secondary
authentication presented to the user periodically or when a device check fails.

Authentication is performed by attaching an existing View , such as a TextView in your user interface to swipe
authenticator. The authenticator listens to the user’s direct interactions with the view (swipe movements) and the
user’s indirect interactions (the position and movement of the device), and submits an authentication request to the
SensifyID web service.

Attach the view once, such as during your Activity's onCreate(Bundle savedInstanceState) method. The SensifyID
web service returns a response indicating how closely the user’s gesture matches the learned model constructed
from previous interactions.

You must also pass authentication listeners, Kinetic.OnAuthenticationSuccessListener and
Kinetic.OnAuthenticationFailureListener at Attaching function call, on the SDK instance that examines the response
and returns a value that expresses how the app may handle the gesture authentication response. The response
includes a numeric Score that reflects how closely the gesture matches the model. Based on this, the app should
call reportAction(String action...), as described in the next section called Action Reporting:

Attach the view to swipe authenticator as follows

mKinetic.attachSwipeAuthenticator(view, new Kinetic.OnAuthenticationSuccessListener() {
@Override
public void onSuccess(Kinetic.AuthenticationResponse authenticationResponse) {
 ...
}
}, new Kinetic.OnAuthenticationFailureListener() {
@Override
public void onFailure(Kinetic.AuthenticationResponse authenticationResponse) {

 ...
}
});
});

The attaching function takes optional listeners to handling pre‑ and post‑authentication events :

Kinetic.OnWillAuthenticationListener listens to the event dispatched before SDK inform SensifyID web
service starting authentication.
Kinetic.OnDidAuthenticationListener listens to the event dispatched after the authentication completed.
KineticTouchListener which capture and do the action for touch event.

The response includes a status property (enum 'modelNotReady', 'success' ... etc) that indicates whether the
request was processed successfully and state of the authentication model. If the status is modelNotReady, it
indicates the authentication model is still learning the user’s gesture patterns. The learning phase should end after
approximately 15 gesture authentication attempts.

The following code segment show how to use the 'status' and 'score' property to evaluate the model state and
gesture matches in order to call reportAction(String action...)

...
float swipeThreshold = 70 f;
Kinetic.AuthStatus status = authenticationResponse.getStatus();
switch (status) {
 case modelNotReady:
 Toast.makeText(getApplicationContext(), "Training in progress", Toast.LENGTH_SHORT).show();
 mKinetic.reportActionForAuth("allow", new Kinetic.OnReportActionSuccessListener() {
 @Override
 public void onSuccess(Kinetic.ReportResponse reportResponse) {
 ...
 }
 }, new Kinetic.OnReportActionFailureListener() {
 @Override
 public void onFailure(Kinetic.ReportResponse reportResponse) {
 ...
 }
 });
 break;
 case success:
 // Examine the gesture score
 if (authenticationResponse.getScore() > swipeThreshold) {
 //Action Reporting
 mKinetic.reportActionForAuth("allow", new Kinetic.OnReportActionSuccessListener() {
 @Override
 public void onSuccess(Kinetic.ReportResponse reportResponse) {
 ...
 }
 }, new Kinetic.OnReportActionFailureListener() {
 @Override
 public void onFailure(Kinetic.ReportResponse reportResponse) {
 ...
 }
 });
 } else {
 // Authentication failed. Present authentication UI.
 }
 break;
 default:
 // Authentication failed. Present authentication UI.
}
...

Action Reporting
When a gesture fails to authenticate due to a low score, the app should take additional steps to authenticate the
user and then report the subsequent action as allow or deny back to the SensifyID SDK. Invoke the
mKinetic.reportAction(String action) method, passing the action value

Pass the action value allow to inform the SensifyID web service that your app considers the gesture value,
and the gesture should be incorporated into the learning authentication model.
Pass the action value deny value to inform the SensifyID web service that the gesture should not be
incorporated into the learning authentication model.

The response includes a status property that indicates whether the request was processed successfully, and
whether the authentication model is still learning the user’s gesture patterns. The learning phase should end after
approximately 15 gesture authentication attempts.

The reportAction also has two optional parameters :

TaskAction specify the particular action for gesture check/task.
ExtraInfo additional optional information pass to server

Lifecycle handling (Android Only)
The SDK is running certain background tasks to collect the data during the activity lifetime. It is best practice to
notify the SDK when the activity is onPause() or onResume() so that the SDK can stop and restart the background
tasks respectively.

class Activity extends AppCompatActivity {
 ...

 @Override
 protected void onResume() {
 super.onResume();

 //Integrate Gesture Authentication
 mKinetic.onResume();
 }

 @Override
 protected void onPause() {
 super.onPause();

 //Integrate Gesture Authentication

...
 //call reportAction with `allow` to incorporate the gesture into the learning authentication model
 mKinetic.reportActionForAuth("allow", new Kinetic.OnReportActionSuccessListener() {
 @Override
 public void onSuccess(final Kinetic.ReportResponse reportResponse) {
 ...
 }
 }, new Kinetic.OnReportActionFailureListener() {
 @Override
 public void onFailure(final Kinetic.ReportResponse reportResponse) {

 });

//or call reportAction with `deny` to not incorporate the gesture into the learning authentication mod
 mKinetic.reportAction("deny", null, null);
...

 mKinetic.onPause();
 }
 ...
}

